九年级上册初中数学专项练习212522二实际问题与次函数重难点题型
9年级数学上册专项
9数学综合检测下载
数学试卷介绍
本资源为9数学综合检测,提供免费下载服务。数学试卷包含完整题目和答案解析,适合9学生使用。
文档预览(前 3 页)
💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异
实际问题与二次函数-重难点题型
【知识点1 解二次函数的实际应用问题的一般步骤】
审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);
设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;
列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;
解:按题目要求结合二次函数的性质解答相应的问题;
检:检验所得的解,是否符合实际,即是否为所提问题的答案;
答:写出答案.
【题型1 利用二次函数解决几何图形问题】
【例1】(萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.( π取3)
(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.
(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)
【变式1-1】(安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.
(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;
(2)求矩形观赏鱼用地LJHF面积的最大值.
【变式1-2】(富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.
(1)若花园的面积为192m2,求x的值;
(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?
(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.
【变式1-3】(温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:
方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.
(1)若a=6.
①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?
②按图乙的方案,能围成的矩形花圃的最大面积是多少?
(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.
【知识点2 销售问题中的常用公式】
(1)利润=售价-进价=进价×利润率
(2)利润率 =
(3)总利润=总售价-总进价=销售量×(单件售价-单件成本)
【题型2 利用二次函数解决销售利润问题】
【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y(千克)与销售单价x(元)的关系如图所示.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?
【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:
销售单价x(元)
...(仅显示前约 3 页内容)
📄 已显示数学试卷前 3 页内容,完整9数学综合检测请点击上方按钮免费下载