九年级上册初中数学专项练习212524垂径定理重难点题型
9年级数学上册专项
9数学综合检测下载
数学试卷介绍
本资源为9数学综合检测,提供免费下载服务。数学试卷包含完整题目和答案解析,适合9学生使用。
文档预览(前 3 页)
💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异
垂径定理-重难点题型
【知识点1 垂径定理及其推论】
(1)垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)垂径定理的推论
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
【题型1 垂径定理(连半径)】
【例1】(海门市期中)如图,以c为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为( )
A.4 B.6 C.8 D.10
【变式1-1】(淄川区一模)如图,在⊙O中,弦AB∥CD,OP⊥CD,OM=MN,AB=18,CD=12,则⊙O的半径为( )
A.4 B.4 C.4 D.4
【变式1-2】(衢州期中)如图,⊙O的直径AB与弦CD相交于E,已知AE=1cm,BE=5cm,∠DEB=30°,求:
(1)CD的弦心距OF的长;
(2)弦CD的长.
【变式1-3】(蜀山区期末)如图,AB是⊙O的直径,弦CD⊥AB于E,连接AD,过点O作OF⊥AD于F,若CD=6,BE=1,求△AOF的面积.
【题型2 垂径定理(作垂线)】
【例2】(江干区月考)如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=8,∠APC=45°,则CD的长为( )
A. B.6 C.2 D.12
【变式2-1】(东胜区一模)如图,在圆⊙O内有折线OABC,其中OA=4,BC=10,∠A=∠B=60°,则AB的长为( )
A.4 B.5 C.6 D.7
【变式2-2】(泰兴市模拟)如图,△ABC中,AB=5,AC=4,BC=2,以A为圆心AB为半径作圆A,延长BC交圆A于点D,则CD长为( )
A.5 B.4 C. D.2
【变式2-3】(渝中区期末)如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.
(1)求证:AC=BD;
(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.
【题型3 垂径定理(分类讨论)】
【例3】(江夏区校级期末)已知圆中两条平行的弦之间距离为1,其中一弦长为8,若半径为5,则另一弦长为( )
A.6 B.2
C.6或2 D.以上说法都不对
【变式3-1】(松桃县模拟)已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为( )
A.36cm或64cm B.60cm或80cm C.80cm D.60cm
【变式3-2】(鼓楼区校级月考)若弦AB,CD是⊙O的两条平行弦,⊙O的半径为13,AB=10,CD=24,则AB,CD之间的距离为( )
A.7 B.17 C.5或12 D.7或17
【变式3-3】(滨江区期末)在半径为25cm的⊙O中,弦AB=40cm,则弦AB所对的弧的中点到AB的距离是( )
A.10cm B.15cm C.40cm D.10cm或40cm
...(仅显示前约 3 页内容)
📄 已显示数学试卷前 3 页内容,完整9数学综合检测请点击上方按钮免费下载