九年级上册初中数学专项练习21一25二八大题型元次方程的根与系数的关系
9年级数学上册专项
9数学综合检测下载
数学试卷介绍
本资源为9数学综合检测,提供免费下载服务。数学试卷包含完整题目和答案解析,适合9学生使用。
文档预览(前 3 页)
💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异
一元二次方程根与系数的关系-八大题型
【知识点 一元二次方程的根与系数的关系】
如果一元二次方程的两个实数根是,那么,.
注意它的使用条件为a≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.
【题型1 由根与系数的关系求代数式的值(直接)】
【例1】(江安县模拟)若α、β是一元二次方程2x2+3x﹣5=0的两根,则的值是 .
【变式1-1】(密山市校级期末)若x1,x2是一元二次方程x2﹣7x+5=0的两根,则(x1﹣1)(x2﹣1)的值为( )
A.1 B.﹣1 C.2 D.﹣2
【变式1-2】(汉川市模拟)已知实数a、b满足|b+3|=0,若关于x的一元二次方程x2﹣ax+b=0的两个实数根分别为x1、x2,则的值是( )
A. B. C.2 D.
【变式1-3】(琅琊区校级月考)若α,β(α≠β)是一元二次方程x2﹣5x﹣14=0的两个根,则α﹣β的值为( )
A.﹣9 B.9 C.﹣9或9 D.﹣5或5
【题型2 由根与系数的关系求代数式的值(代换)】
【例2】(乳山市模拟)若x1,x2是方程2x2﹣3x+1=0的两个根,则3x12﹣3x1+x22=( )
A. B. C. D.
【变式2-1】(牟平区一模)已知一元二次方程x2﹣2022x+1=0的两个根分别为x1,x2,则x121的值为( )
A.﹣1 B.0 C.﹣2022 D.﹣2021
【变式2-2】(东港区校级一模)若m,n是一元二次方程x2﹣5x﹣1=0的两个实数根,则m2﹣6m﹣n+2022的值是( )
A.2016 B.2018 C.2020 D.2022
【变式2-3】(海门市期末)若m,n是方程x2﹣2x﹣1=0的两个实数根,则2m2+4n2﹣4n+2022的值为 .
【题型3 由根与系数的关系求代数式的值(降次)】
【例3】(呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是( )
A.4045 B.4044 C.2022 D.1
【变式3-1】(硚口区模拟)已知a,b是方程x2﹣x﹣5=0的两根,则代数式﹣a3+5a的值是( )
A.5 B.﹣5 C.1 D.﹣1
【变式3-2】(松山区模拟)若m,n是一元二次方程x2+x﹣3=0的两个实数根,则m3﹣4n2+17的值为( )
A.﹣2 B.6 C.﹣4 D.4
【变式3-3】(汉阳区校级月考)已知m,n是方程x2﹣4x+2=0的两根,则代数式2m3+5n24的值是( )
A.57 B.58 C.59 D.60
【题型4 由方程两根满足关系式求字母系数的值】
【例4】(毕节市期末)已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值为( )
A.﹣3或1 B.﹣1或3 C.﹣1 D.3
【变式4-1】(黔西南州期末)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.且x1,x2满足x12+x22﹣x1x2=16,则a的值为( )
A.﹣6 B.﹣1 C.1或﹣6 D.6或﹣1
【变式4-2】(仓山区校级期末)已知关于x的一元二次方程x2﹣4kx+3k2=0.
(1)求证:该方程总有两个实数根;
(2)若此方程的两个实数根x1,x2,满足x1﹣x2=3,求k的值.
【变式4-3】(内江)已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且x12+2x2﹣1,则k的值为 .
【题型5 构造一元二次方程求代数式的值】
【例5】(鄞州区模拟)已知实数a≠b,且满足(a+1)2=3﹣3(a+1),3(b+1)=3﹣(b+1)2,则的值为( )
...(仅显示前约 3 页内容)
📄 已显示数学试卷前 3 页内容,完整9数学综合检测请点击上方按钮免费下载